Microsatellite Instability & Tumor Heterogeneity

Jack DiGiovanna, PhD GM, NGS Applications; Seven Bridges Isaac M. Neuhaus, PhD Director, Computational Genomics, Bristol-Myers Squibb Stefan Kirov, PhD Principal Research Scientist, Bristol-Myers Squibb Danielle Greenawalt, PhD Head, Early Stage Translation Bioinformatics Oncology, Bristol-Myers Squibb

Predict immuno-oncology outcomes

Microsatellite instability

Tumor heterogeneity

Combining results

Comparison to clinical testing

Short tandem repeats of 1 to 6 base-pairs

Often site of DNA replication slippage

Microsatellites have high germline mutation rates (10⁻⁴ to 10⁻² per locus per generation)

- 200x > CNVs
- 200,000x > SNPs

Mononucleotide: (A)13	АААААААААААА			
Dinucleotide: (GT)8	стстстстстстст			
Trinucleotide: (GAT)7	GATGATGATGATGATGATGAT			
Tetranucleotide: (CTAG) ₆	CTAGCTAGCTAGCTAGCTAGCTAG			
Pentanucleotide: (CATTG)5	CATTGCATTGCATTGCATTG			
Hexanucleotide: (GGATCC) ₄	GGATCCGGATCCGGATCC			
Imperfect microsatellite	GTGTGTGTGTGTATGTGTGTG			
Interrupted microsatelllite	стстстстсссстстстстст			
Compound microsatellite	GTGTGTGTGCTCTCTCTCTC			
Figure 1 Microsatellite terminology.				

image credit: Schlotterer & Harr, Encyclopedia of Life Sciences, 2001

SevenBridges

Subramanian et al. (2003) Genome Biol. **4**: R13 Ananda et al. (2012) Genome Biol. Evol. **5**(3): 606-620

DNA mismatch repair (MMR) that is not functioning properly results in genetic hypermutability – manifests as MSI

- Key components include MSH1, PMS1-8, MSH2/3, PARP, BRCA, ERCC2
- Can be observed via PCR assays or whole exome/whole genome sequencing

FDA has approved treatments for MMR deficient (or MSI high tumors)

This makes MSI status useful patient stratification biomarker

FDA recently approved a companion diagnostic test (F1CDx)

SevenBridges

Kim and Park (2014) Cancer Res. **74**(22): 6377-6382 Salipante et al. (2014) Clin. Chem. **60**(9): 1192-1199

Aligners can reject large INDELs

DNA amplicons generated by PCR can lead to false positives due to replication 'slippage

There are several applications that can call MSI status from NGS data

- MSIsensor, mSINGS, MANTIS, MOSAIC, lobSTR

MSI profiling

lobSTR 4.0.6 – variant calling of MSI mutations

MSIsensor – tests statistical difference in STR loci length distributions

Validating predictions (lobSTR)

Colorectal adenocarcinomas with MSI status (n = 592)

Support Vector Machine to classify MSI vs MSS

- Precision = 100%
- Recall = 90.7%

Validating predictions (MSIsensor)

Colorectal adenocarcinomas with MSI status (n = 592)

Compared output with published threshold

- Precision = 91.1%
- Recall = 95.4%

Microsatellite instability

Tumor heterogeneity

INPUTS Tumor Purity

Combining results

Comparison to clinical testing

Tumor Heterogeneity (purity)

image credit: Nowell (1976) Science

Clones have different potentials to metastasize

image credit: Ding et al (2012) Nature

Heterogeneity (purity) workflow

SciClone 1.1 – predicts heterogeneity from clustering AF

Fishplot – plots of clonal evolution

Heterogeneity validation

ICGC-TCGA DREAM Somatic Mutation Calling - Tumor Heterogeneity Challenge

Purity estimate within 5% •

5 of 6 groups of tumor cells with similarly • descriptive mutations (clusters) predicted

	Purity		Number of clusters		Cluster info	
	Truth	SBG	Truth	SBG	Truth	SBG
Tumor 1	70%	64.9%	4	3	1: 713 (70%) 2: 1,483 (45%) 3: 1 (13%) 4: 1,285 (10%)	1: 729 (65%) 2: 1,923 (43%) 3: 830 (15%)
Tumor 2	90%	88.3%	2	2	1: 186 (90%) 2: 54 (36%)	1: 186 (88%) 2: 54 (35%)

Microsatellite instability

Tumor heterogeneity

INPUTS Tumor Purity

Combining results

Comparison to clinical testing

Benchmarking MSIsensor

Dataset of 85 legacy CRC samples as a truth set

MSI, as many other DNASeq measurements, relies on somatic mutations

Accurate in samples with high to moderate tumor content

Benchmarking SciClone

SciClone utilizes the CNV/LOH neutral parts of the genome and quantification of variant allele frequencies within those regions. The variant data is used to build a graph with the centroid being the germ line.

In order to filter samples we use the centroid for estimating the purity

Purity can be over >100% in the raw output - would indicate lack of germ cells DNA presence

Occasionally these may disagree. Currently we use the mean of both methods and we are in the process of optimizing the approach.

TNSNV vs Strelka

Clinical MSI data

- Evaluated MSI status across a number of clinical studies (CRC, RCC, melanoma, etc.)
- Distribution of MSI values for 1496 pantumor samples
 - TumorPurityPass is TRUE if purity > 20%

Microsatellite instability

Tumor heterogeneity

NPUTS INPUTS Tumor Purity Tumor Purity

Combining results

Comparison to clinical testing

MSIsensor vs Lab Results

- 38 samples with PCR or IHC based MSI value available
- Compared to MSISensor using a cutoff score of 3.5

I ah Doculta

r		MSI-H	MSI- Stable	
nso	MSI-H	30	0	
WSI Se	MSI- Stable	3	5	

MSI Sensor vs Tumor Purity

- Samples that were classified incorrectly by MSIsensor have low tumor purity
- Removing samples with <20% tumor purity allows us to generate concordant calls for all samples

Tumor Purity (%)

Accurate and robust workflows for MSI and tumor heterogeneity

We have established best practices for MSI status calling based on WES data

- We use SciClone to evaluate tumor purity from WES data and remove samples with tumor content less than 20%
- We then utilize *MSIsensor* and call MSI status based on recommended threshold

Currently we are using these guidelines to deliver MSI status for a number of clinical and preclinical studies across multiple indications

